If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-100=96
We move all terms to the left:
y^2-100-(96)=0
We add all the numbers together, and all the variables
y^2-196=0
a = 1; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·1·(-196)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*1}=\frac{-28}{2} =-14 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*1}=\frac{28}{2} =14 $
| 4x+4+7x+9+90=180 | | b5−33=−35 | | -5m-1=19 | | −3−−2(v−2)=2v | | x+15/6=6 | | 0.4=28x/0.4x^2+1.3 | | 13w=78 | | 5(i+2)-9=17-1 | | 143+2h=1025 | | 3s−8=4 | | 16(x-1)=13x-36 | | -3*2x-3=-6x+9 | | y=9y+3+y-2+5 | | 4b+2b=108 | | 6(3r-5)=-3 | | 4(n+11)=80 | | w-2.1=19.5 | | -25=5e | | -3+8y=37 | | 9x=(4+x)1.8 | | 19=9y+3-5y | | 1.0(x+250)=5000 | | C=15.00-0.06x | | 1.0(x+250)=5,000 | | 3)−5(−2−8m)=10+5m | | 16x=576 | | 5x+12=39 | | 4(k-3)=2=(2k-6) | | Y=4.25x+25 | | 3+10z=4z-18 | | k-100/–5=0 | | −d/19−5=1 |